Making Healthcare Better
through Data

detect problems - predict outcomes - automate decisions

Our Products


Imagine a situation where hundreds of medical scans, tests and images are screened by AI, and only the ones with abnormalities are presented to the experts. Other than the increased speed in diagnosis, medical experts will be able to take on more work and focus specialized abilities on high value, decision-making work.

CONTINUUM Enterprise

Hospital performance, both operational and clinical, can be dramatically increased when data are used to detect areas of performance bottlenecks. Simulation of new management strategies will result in precise decision making and policy setting. Guesswork in hospital management will be a thing of the past.

CONTINUUM Population

Managing for optimal health in situations of limited resources is what Public Health is mostly about. Being able to quantify and predict the impact of public health policies where large sums of funds are being allocated would serve as a powerful tool for public health administrators and healthcare payers of any size of population.


Multiple factors impact the outcome of certain medical interventions ranging from behavioral change to medication to surgery, including individual patient differences. Machine learning on the effects of different treatment options matching key patient characteristics and attributes could lead to the desired state of Personalized Medicine.

Our Approach


We listen to your problems, your concerns, how you operate, and what matters most to you and your organization.


We take a good look at your data. Quality and quantity of your data, including how it is stored, are important in telling us how to address your issues.


We, and preferably with you, think of desired outcomes, measurements and applicable solutions. Formulating the question is a key part of success.


We train the machine. The machine will absorb all the knowledge from your organization from the data fed to it. It will see patterns. It becomes intelligent.


We, after satisfactory testing, help you deploy it in real-world situation, measure if it reaches the desired objective, tweak it for increased performance, and more tweaking until you are happy.

Our Projects

Our Team

Veerachat Petpisit

Veerachat Petpisit, MD.


Lifelong healthcare executive; full-cycle hospital from doctor to director, full-cycle pharma from country medical director to regional marketing head to global health head. Aspires to better health with data.

Kamol Chalermviriya

Kamol Chalermviriya

Chief Architect

Software Architect specializing in building highly scalable, secure, performance-focused enterprise-level software applications, also passionate about lifting up qualify of life of patients.

Charin Polpanumas

Charin Polpanumas

Data Scientist

Data scientist with proven track records in Southeast Asia, Japan and China. Delivered data products that save USD millions annually. Speaks human language and makes data insightful and actionable.

Frequently Asked Questions

What type of problems can be addressed with AI?

With modern machine learning, especially deep learning, techniques, we there are three main types of problems: detection, prediction and automation. Detection involves identifying specific group characteristics of your samples, be it medical images, lab results or patient profiles. Prediction allows us to know in advance the likely clinical and financial outcomes of each operation. And from these two, we can automate decisions according for optimal results.

How much data is enough?

It depends. There are several rule of thumps based on extrapolation from past research such as at least 20,000 images per label for classification and at least 100,000 samples of tabular data for deep learning approach to outperform traditional machine learning. However, it is best to bring your sample dataset and discuss with us.

On premise or on cloud, what's the difference?

Each solution offers its advantages and disadvantages. It all depends on the company's culture and the data. Cloud offers a perfect option for companies that need deployment simplicity, secure processing, and easily scalable platform. It is perfect for those who need the full feature of A.I. with little deployment cost and manpower. On-Premise, however, is perfect for those with sensitive content and a very restrictive legislative environment. It offers the ultimate solution in security, privacy, and compliance.

Handling patient data, what are the key concerns?

There are many concerns when handling patient data for machine learning in healthcare, for instance, data cleansing, data storage, data privacy and security etc. However, in our view, the biggest concern is the data privacy and security. Therefore, we use HIPAA standard when handling the patient data with all of our clients.

Is it hard to do machine learning in-house?

The most difficult part of machine learning in healthcare is preparing the data to be both for the model and for HIPAA compliance. If you can, with our support, clear these requirements, we will take care of setting up your machine learning models and train your personnel on how to maintain and tune them on your own.

How do we measure model performance?

Before you measure performance, you need to understand your priority. For instance, if you want to use the model for screening, you would want to achieve the highest sensitivity possible even though you might have a relatively high false positive rate. On the other hand, if you are concerned about false positives, you might want to use a more balanced metric like the F1 score.

What in-house capabilities do I need to be ready for AI implementation?

In order to customize and maintain the model, you would need a team with backend engineers who can transform your datasets into HIPAA-compliant format our models ingest as well as distribute the model outputs to end users. As for performance tuning, domain owners such as clinicians can tune the models directly from our user interface without any programming expertise.